GCE

Chemistry B

H433/02: Scientific literacy in chemistry
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	AO	Guidance
1	(a)		A: (di)acyl chloride \checkmark B: (di)amine	2	1.1×2	IGNORE arene/benzene/aromatic ring/secondary/ DO NOT ALLOW phenyl/amide/acyl on its own
1	(b)		Angle 120° three groups/sets of electrons/ 3 areas of electron density (around C) $\sqrt{ }$ repel and get as far away as possible/minimise repulsion \checkmark	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 1.1 \end{aligned}$	ALLOW 117-122 Mark separately (i.e. no ecf) IGNORE three (bonding) pairs
1	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{2 6}$ (\mathbf{g}) award 2 marks Amount benzene-1,4-dicarboxylic acid $=32 / 166=0.19 \mathrm{~mol} \checkmark$ Mass compound $\mathbf{A}=0.19 \times 0.67 \times 203=26(\mathrm{~g})$ (nearest whole number)	2	2.4×2	ALLOW ecf from incorrect number of moles
1	(d)		step 1: (conc) ammonia/ NH_{3} step 2: $\mathrm{Sn}+\underline{\text { conc }} \mathrm{HCl} /$ names \checkmark	2	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	IGNORE heat/reflux/ethanolic but any other additional reagents is CON
1	(e)	(i)	hydrogen (bonds) \checkmark	1	1.1	
1	(e)	(ii)		1	1.1	BOTH dotted lines required but not lone pairs or partial charges
1	(f)	(i)	Heat/ reflux with $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{NaOH} /$ acid / alkali / names \checkmark	1	1.2	DO NOT ALLOW conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
1	(f)	(ii)	Answer depends on catalysts chosen in (f)(i): alkaline hydrolysis:	2	1.2×2	ALLOW salts rather than cation/ anion ALLOW any unambiguous representation

| Question | | | Marks | AO
 element |
| :---: | :---: | :---: | :---: | :---: | :---: |

Question			Answer	Marks	AO	Guidance
2	(a)		electrons raised/excited to higher energy levels (by heat) fall and release energy/visible light/photon frequency of energy/light/photon proportional to gap between energy levels $/(\Delta) E=h v \checkmark$	3	1.2×3	DO NOT ALLOW answers where energy source is e/m radiation
2	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $1260\left(\mathbf{c m}^{3}\right)$ award 4 marks $\begin{aligned} & \text { amount } \mathrm{SrCO}_{3}(=12.0 / 147.6)=0.0813(\mathrm{~mol}) \checkmark \\ & \mathrm{V}=\mathrm{nRT} / \mathrm{P} \checkmark \\ & \mathrm{~V}=0.0813 \times 8.314 \times 290 \times 10^{6} / 155000=1260\left(\mathrm{~cm}^{3}\right)(3 \text { or } \\ & \text { more sf) } \checkmark \end{aligned}$ Answer to 3sf \checkmark	4	2.8×4	ALLOW ECF ALLOW answers rounding to 1260 for 3 marks If values inserted into equation that clearly demonstrates use of MP2 this scores MP2 ALLOW sf mark for any calculated volume to 3 sf .
2	(b)	(ii)	strontium ions are larger (and attraction less) strontium (ions) have lower charge density \checkmark they distort/polarise the carbonate (ions) less thermal stability of strontium (carbonate) is higher \checkmark	4	3.2×4	ALLOW ora throughout DO NOT ALLOW atomic radius ALLOW thermal stability increases down the group.
2	(c)	(i)	$46 \checkmark$	1	1.1	
2	(c)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 87.71 award 2 marks $(84 \times 0.56)+(86 \times 9.86)+(87 \times 7.00)+(88 \times 82.58) \checkmark$ evaluated as percentage and expressed to $2 \mathrm{dp} \checkmark$	2	1.2×2	If 2 marks not scored award max 1 mark for any calculated value between 86 and 88 to $2 d p$.
2	(d)*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Chooses an appropriate acid concentration.	6	$\begin{aligned} & 3.4 \times 3 \\ & 3.3 \times 3 \end{aligned}$	Indicative scientific points include: Choice of acid concentration

Question			Answer	Marks	AO	Guidance
			AND Gives a detailed description, including some fine detail, of procedure. AND Describes how the result would be calculated. There is a well-developed line of reasoning which is clear and logically structured. Level 2 (3-4 marks) Gives most of the key steps in the procedure, may include some fine detail AND describes how the result would be calculated. OR Addresses all three areas but lacks depth in any of them. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) A basic description of procedure. OR An attempt to describe the choice of acid concentration. OR An attempt to describe how the result would be calculated. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			- Calculates conc of $\operatorname{Sr}(\mathrm{OH})_{2(a q)}=0.08 \mathrm{~mol}$ dm^{-3}; - use of reaction stoichiometry 2:1 to determine appropriate concentration of acid to be used (approx. 0.15-0.2 mol dm^{-3}) Practical details - pipette $20 / 25 \mathrm{~cm}^{3} \mathrm{Sr}(\mathrm{OH})_{2} / \mathrm{HCl}$ in a suitable flask; - add indicator; (details not required) - place acid/alkali in burette; - titrate until colour change (details not required) - repeat until concordant titres obtained Relevant fine detail - Rinses pipette with solution to be delivered - Rinses burette with solution to be delivered - Performs a rough titration - Add dropwise near to end point Final calculation - Calculates average volume used - Use of equation or mole ratio - Gives example of suitable relationship to calculate actual concentration eg use of $c=n / v$
2	(e)	(i)	$\begin{aligned} & \mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightharpoons \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})^{\checkmark} \\ & K_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \checkmark \end{aligned}$	2	$\begin{aligned} & 2.2 \\ & 1.1 \end{aligned}$	Equilibrium can be either way round. Penalise incorrect charge on Sr ions once only
2	(e)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.6 \times 10^{-4} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ award 3 marks	3	2.6×3	If final answer does not $=1.6 \times 10^{-4} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ ALLOW ECF from (i) provided only Sr and OH ions are involved

Question			Answer	Marks	AO	Guidance
			$\left[\mathrm{Sr}^{2+}\right]=3.4 \times 10^{-2} \text { AND }\left[\mathrm{OH}^{-}\right]=6.8 \times 10^{-2} \checkmark$ $K_{\text {sp }}=3.4 \times 10^{-2} \times\left(6.8 \times 10^{-2}\right)^{2}=1.6 \times 10^{-4} \checkmark$ units $\mathrm{mol}^{3} \mathrm{dm}^{-9} \checkmark$			ALLOW ECF from incorrect concentrations of Sr or OH ions, including units as appropriate ALLOW 2 or more sf ALLOW units derived from an attempt at a worked calculation
2	(e)	(iii)	larger/increased concentration of $\mathrm{OH}^{-} \checkmark$ concentration of Sr^{2+} reduces in order for $\mathrm{K}_{\text {sp }}$ to remain constant AND solubility is lower \checkmark	2	3.2×2	ALLOW more hydroxide ions ALLOW moves equilibrium to left AND solubility is lower Any reference to $\mathrm{K}_{\text {sp }}$ changing is CON
2	(f)	(i)	s(-block) \checkmark	1	1.1	
2	(f)	(ii)	Any two from: Sr^{2+} and $\mathrm{Rb}^{+} / \mathrm{Sr}$ loses 2 electrons and Rb loses 1 electron more (delocalised) electrons in $\mathrm{Sr} \checkmark$ Sr^{2+} attracts (more) electrons (in metallic structure) more strongly \checkmark	2	1.1×2	DO NOT ALLOW more outer shell electrons DO NOT ALLOW references to Sr nuclei

Question		Answer	Marks	AO element	Guidance	
$\mathbf{3}$	(a)	$3 l_{2}+6$ Numbers in front of chlorine species \checkmark Numbers in front of OH^{\prime} 'and $\mathrm{H}_{2} \mathrm{O}$ correct \checkmark	$\mathbf{2}$	$\mathbf{2 . 5 \times 2}$	ALLOW '1' in front of $\mathrm{ClO}{ }_{3}{ }^{-} / \mathrm{correct} \mathrm{multiples}$	
$\mathbf{3}$	(b)	(i)	$\mathrm{ClO}_{3}-/ \mathrm{ClO}_{2}$ is less positive/ more negative than $\mathrm{Cl}_{2} / \mathrm{Cl}-\checkmark$	$\mathbf{2}$	$\mathbf{2 . 8} \times \mathbf{2}$	IGNORE 'larger'/'smaller'

			so ClO_{2} is oxidised AND Cl_{2} is reduced / electrons flow from $\mathrm{ClO}_{3}{ }^{-} / \mathrm{ClO}_{2}$ (ora) / half equations are reversed \checkmark			ALLOW by reference to one species in either half equation.
3	(b)	(ii)	Larger $\left[\mathrm{H}^{+}\right] /\left[\mathrm{Cl}^{-}\right] \checkmark$ Equilibrium / equation 3.1 moves to right \checkmark	2	3.1×2	IGNORE 'more’ ALLOW E^{\ominus} for $\mathrm{ClO}_{3}-/ \mathrm{ClO}_{2}$ more positive OR $E^{e} \mathrm{Cl}_{2} / \mathrm{Cl}$ - becomes more negative
3	(c)	(i)	voltmeter and salt bridge \checkmark $\mathrm{Cu}^{2+}(\mathrm{aq})$ and $\mathrm{Cu}(\mathrm{s}) \checkmark$ $\mathrm{Cl}_{2}(\mathrm{aq}) / \mathrm{Cl}(\mathrm{aq})$ and Pt / C electrode \checkmark solutions $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and $298 \mathrm{~K} \checkmark$	4	3.4×4	IGNORE description of makeup of salt bridge IGNORE ' 2 ' in front of ' $\mathrm{Cl}^{-‘}$ ALLOW Cu and Pt / C without state symbols. ALLOW one mark for points 2 and 3 if all state symbols omitted ALLOW electrodes around the other way If no solution shown in either half cell MP2 OR MP3 cannot score If no solution shown in both half cells only penalise once.
3	(c)	(ii)	1.02 (V) ${ }^{\checkmark}$	1	2.8	IGNORE sign
3	(c)	(iii)	$\underline{\text { in the wire from } \mathrm{Cu}(\mathrm{ora}) \checkmark}$	1	2.8	ALLOW movement of electrons correctly labelled on the diagram.
3	(c)	(iv)	$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \leftrightharpoons \mathrm{H}_{2}(\mathrm{~g})$	1	1.2	ALLOW equation: -halved - with arrow -other way round

Question			Answer	Marks	AO	Guidance
3	(c)	(v)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = +0.28(V) award 2 marks $\begin{aligned} & \ln 0.01=-4.6 \checkmark \\ & E=+0.34-(0.0128 \times 4.6)=+0.28(V) \checkmark \end{aligned}$	2	2.8×2	ALLOW 2 or more sf + sign essential. (0.28 with no sign = 1) Ig 0.01 answer is +0.31 V for 1 mark only ALLOW If MP1 not clearly stated then by implication it can be credited from a subsequent calculation eg; $\mathrm{E}_{\text {cell }}=1.02$ answer is +0.96 V for 1 mark only
3	(d)	(i)	$\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}+\mathrm{I}_{2}$	1	1.2	IGNORE state symbols
3	(d)	(ii)	iodide(ion)	1	1.2	IGNORE formulae
3	(d)	(iii)	brown/orange/yellow (solution)	1	1.2	ALLOW these colours or any combination but no others. IGNORE reference to starting colour. PPT or (s) is CON
3	(d)	(iv)	Chlorine has a greater attraction for (AW) electrons (than iodine) (ora)	1	2.5	Reference to molecules is CON IGNORE references to electronegativity / attraction to valence electrons
3	(e)		Test tube or flask containing Sodium Chloride and concentrated sulphuric acid Delivery tube for downward delivery into a test tube or boiling tube \checkmark	2	3.3×2	ALLOW formulae Collection over water, or into a sealed vessel CONs MP2

Question		Answer	Marks	AO element	Guidance	
$\mathbf{4}$	(a)		Oxides of nitrogen $/ \mathrm{NO}_{2}$ is recycled/regenerated/reformed \checkmark reactions are $\mathrm{NO}_{2}+\mathrm{O} \rightarrow \mathrm{NO}+\mathrm{O}_{2}$ and $\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \checkmark$	$\mathbf{2}$	$\mathbf{3 . 1 \times 2}$	
$\mathbf{4}$	(b)	(i)		$\mathbf{4}$	$\mathbf{2 . 8 \times 4}$	

Question			Answer					Marks	AO	Guidance
			 axes round right way and labelled correctly scale to fill $2 / 3$ of area \checkmark plot with line of best fit \checkmark measurement of one half-life $=1400 \mathrm{~s} \pm 100 \checkmark$							Should be a curve that touches at least 4 points. Mark half-life by answer given, no construction lines needed for this part.
4	(b)	(ii)	'Half lives constant' AND At least two half-lives constructed					1	2.7	
	(c)		$\left(\mathrm{k}=9.8 \times 10^{-5} / 0.210=\right) 4.7 \times 10^{-4} \checkmark$ units $\mathrm{s}^{-1} \checkmark$					2	2.4×2	ALLOW 2 or more sf Mark units separately
	(d)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=(+) \mathbf{1 0 0} \pm 10$ (any sf) ($\mathrm{kJ} \mathrm{mol}^{-1}$) award $\mathbf{3}$ marks$\text { slope }=-12000 \pm 500$$\begin{aligned} & \text { Ea }=12000 \times 8.314=(+) 99768(\mathrm{~J}) \checkmark \\ & =(+) 99.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{2} \checkmark \end{aligned}$					3	2.6×3	ALLOW one or more sf ALLOW ECF MP1 is for calculating the gradient MP2 is for multiplying by R and evaluating MP3 is for converting from J to kJ
	(e)		(this is a possible mechanism because) reactions add to overall equation / $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2} \checkmark$					3	3.1×3	

Question	Answer	Marks	AO element	Guidance
	step 1 could be rate determining because it uses $\mathrm{N}_{2} \mathrm{O}_{5}$ as a reactant / $\mathrm{N}_{2} \mathrm{O}_{5}$ decomposes step 3 could be rate determining because it uses $\mathrm{N}_{2} \mathrm{O}_{5}$ as a reactant / could be slow compared to steps 1 and $2 \checkmark$			ALLOW cannot be step 2 as $\mathrm{N}_{2} \mathrm{O}_{5}$ does not appear in the equation for 1 mark if no reference made to either step 1 or step 3. ALLOW BOTH step 1 and step 3 could be RDS with a reason scores 2 marks BOTH step 1 and step 3 with no reason scores 1 mark.

Question			Answer	Marks	AO	Guidance
5	(a)			3	2.1 2.1 2.1	First mark for correct elements Second mark for correct $\Delta_{f} H$ descriptions and top equation ALLOW $\Delta_{i} H 2 \mathrm{HO}_{2}$ IGNORE $\Delta_{\mathrm{t}} \mathrm{H}_{\mathrm{O}} \mathrm{O}_{2}$ Third mark for correct expression for $\Delta_{c} H$ Allow use of definitions/symbols from enthalpy cycle
5	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.9 (times greater) award 4 marks $\begin{aligned} & \text { Equation: } \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \checkmark \\ & 5 / 0.2=25 \text { (moles 'air') } \\ & 12.5 \text { moles 'air' for acetylene } \checkmark \\ & 26 / 13.5=1.9 \text { (times greater) } \checkmark \end{aligned}$	4	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.6 \\ & 2.6 \end{aligned}$	ALLOW 3 marks if mole fraction route not used ie; Correct equation for propane \checkmark Scaled equation for acetylene so that moles of O_{2} are identical in both equations / acetylene needs 2.5 moles O_{2} and propane needs 5 moles $\mathrm{O}_{2} \checkmark$ Ratio of acetylene to propane $=2$ identified \checkmark ALLOW ECF from an incorrect equation
5	(c)	(i)	Carbon atoms contain 4 outer (shell) electrons \checkmark sp^{2} (orbitals) uses 3 electrons \checkmark	2	2.1×2	
		(ii)	ethene: form a π bond naphthalene: delocalised/conjugated \checkmark	2	1.1×2	
5	(d)		Abstraction/removal of hydrogen from naphthalene \checkmark	1	2.5	DO NOT ALLOW steps before abstraction IGNORE any further steps that grow PAH
5	(e)	(i)	initiation AND radicals formed (from molecules) \checkmark	1	2.1	
		(ii)	Provide energy/break bonds by colliding \checkmark	1	3.2	IGNORE reference to catalyst
5	(f)		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.	6	3.1×6	Indicative scientific points include: Flame temp:

Question		Answer	Marks	AO element

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

